Skip to main content
Log in

Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the direct synthesis of ZnCo2O4 and ZnO/ZnCo2O4 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierarchical self-supported nanostructures are composed of one-dimensional (1D) ZnCo2O4 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo2O4 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo2O4 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (∼900 mA·h·g−1 at a rate of 45 mA·h·g−1) for Li ion battery electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Besenhard, J. O.; Yang, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 1997, 68, 87–90.

    Article  CAS  Google Scholar 

  2. Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium-silicon system. J. Solid State Chem. 1981, 37, 271–278.

    Article  CAS  Google Scholar 

  3. Bruce, P. G.; Scrosati, B.; Tarascon, J. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.

    Article  CAS  Google Scholar 

  4. Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    Article  CAS  Google Scholar 

  5. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

    Article  CAS  Google Scholar 

  6. Wang, L.; Cheng, W.; Gong, H.; Wang, C.; Wang, D.; Tang, K.; Qian, Y. Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 11297–11302.

    Article  CAS  Google Scholar 

  7. Wang, X.; Yang, Z.; Sun, X.; Li, X.; Wang, D.; Wang, P.; He, D. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J. Mater. Chem. 2011, 21, 9988–9990.

    Article  CAS  Google Scholar 

  8. Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

    Article  CAS  Google Scholar 

  9. Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

    Article  CAS  Google Scholar 

  10. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  CAS  Google Scholar 

  11. Chan, C. K.; Peng, H.; Twesten, R. D.; Jarausch, K.; Zhang, X. F.; Cui, Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 2007, 7, 490–495.

    Article  CAS  Google Scholar 

  12. Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

    Article  CAS  Google Scholar 

  13. Du, N.; Zhang, H.; Chen, B.; Wu, J.; Ma, X.; Liu, Z.; Zhang, Y.; Yang, D.; Huang, X.; Tu, J. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.

    Article  CAS  Google Scholar 

  14. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  CAS  Google Scholar 

  15. Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847–2848.

    Article  Google Scholar 

  16. Li, M.; Yin, Y. X.; Li, C.; Zhang, F.; Wan, L. J.; Xu, S.; Evans, D. G. Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem. Commun. 2012, 48, 410–412.

    Article  CAS  Google Scholar 

  17. Ai, C.; Yin, M.; Wang, C.; Sun, J. Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium ion batteries. J. Mater. Sci. 2004, 39, 1077–1079.

    Article  CAS  Google Scholar 

  18. Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

    Article  CAS  Google Scholar 

  19. Ashoka, S.; Chithaiah, P.; Thipperudraiah, K. V.; Chandrappa, G. T. Nanostructural zinc oxide hollow spheres: A facile synthesis and catalytic properties. Inorg. Chim. Acta 2010, 363, 3442–3447.

    Article  CAS  Google Scholar 

  20. Li, Y.; Tan, B.; Wu, Y. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc. 2006, 128, 14258–14259.

    Article  CAS  Google Scholar 

  21. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

    Article  CAS  Google Scholar 

  22. Tong, Y.; Liu, Y.; Dong, L.; Zhao, D.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 2006, 110, 20263–20267.

    Article  CAS  Google Scholar 

  23. Ahmad, M.; Shi, Y.; Nisar, A.; Sun, H.; Shen, W.; Wei, M.; Zhu, J. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 2011, 21, 7723–7729.

    Article  CAS  Google Scholar 

  24. Yu, Y.; Chen, C. H.; Shui, J. L.; Xie, S. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angew. Chem. Int. Ed. 2005, 44, 7085–7089.

    Article  CAS  Google Scholar 

  25. Pralong, V.; Leriche, J. B.; Beaudoin, B.; Naudin, E.; Morcrette, M.; Tarascon, J. M. Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium. Solid State Ionics 2004, 166, 295–305.

    Article  CAS  Google Scholar 

  26. Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

    Article  CAS  Google Scholar 

  27. Lee, S. H.; Seo, S. D.; Jin, Y. H.; Shim, H. W.; Kim, D. W. A graphite foil electrode covered with electrochemically exfoliated graphene nanosheets. Electrochem. Commun. 2010, 12, 1419–1422.

    Article  CAS  Google Scholar 

  28. Zhou, W.; Cheng, C.; Liu, J.; Tay, Y. Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H. H.; Yu, T.; et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

    Article  CAS  Google Scholar 

  29. Xue, X.; Chen, Z.; Xing, L.; Yuan, S.; Chen, Y. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun. 2011, 47, 5205–5207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Wan Kim or Kug Sun Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.W., Seo, SD., Kim, D.W. et al. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 6, 348–355 (2013). https://doi.org/10.1007/s12274-013-0311-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0311-0

Keywords

Navigation