Skip to main content

Advertisement

Log in

Cellulose-derived tin-oxide-nanoparticle-embedded carbon fibers as binder-free flexible Li-ion battery anodes

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose has attracted attention as a biomass carbon precursor owing to its abundant reserves and unique properties such as a hierarchical fibrous structure and good mechanical properties. Here, we fabricate cellulose-derived carbon fibers via a facile electrospinning and carbonization process by using cellulose acetate precursor. The prepared carbon fibers are directly used as binder-free flexible anodes for Li ion batteries. They exhibit a high initial reversible specific capacity of 555 mA h g−1 with better cycling stability than carbonized commercial cellulose electrodes. To design extensive lithium storage electrodes, cellulose-derived carbon fiber/SnO2 composites are fabricated through electrospinning. In order to prevent the degradation of the active material, we encapsulate SnO2 nanoparticles in cellulose-derived carbon fibers with a large amount of SnO2 (46.4 wt%), which is evenly dispersed in the fibrous carbon matrix. Cellulose-derived carbon fiber/SnO2 electrodes reveal a high reversible capacity of 667 mA h g−1 and stable cycling retention of 76% over 100 cycles at 200 mA g−1, which signify much better cycling performance than commercial SnO2 nanoparticles. These properties are reflected in the advantages of cellulose-derived carbon fiber/SnO2 composite electrodes such as high reactivity, good mechanical properties, and high electrical conductivity that originate from the cellulose-based fibril nanostructure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

This work is supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (2016R1A2B2012728 and NRF-2018M3D1A1058744) and by the R &D Center for Valuable Recycling(Global-Top R&BD Program) of the Ministry of Environment (Project No.: R2-17-2016002250005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, SI., Kim, JC. & Kim, DW. Cellulose-derived tin-oxide-nanoparticle-embedded carbon fibers as binder-free flexible Li-ion battery anodes. Cellulose 26, 2557–2571 (2019). https://doi.org/10.1007/s10570-019-02258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02258-7

Keywords

Navigation